0 (number)
   HOME

TheInfoList



OR:

0 (zero) is a
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder
numerical digit A numerical digit (often shortened to just digit) is a single symbol used alone (such as "2") or in combinations (such as "25"), to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits (Latin ...
, which works by
multiplying Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition ...
digits to the left of 0 by the radix, usually by 10. As a number, 0 fulfills a central role in mathematics as the additive identity of the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s,
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s, and other
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set ...
s. Common names for the number 0 in English are ''zero'', ''nought'', ''naught'' (), ''nil''. In contexts where at least one adjacent digit distinguishes it from the letter O, the number is sometimes pronounced as ''oh'' or ''o'' (). Informal or
slang Slang is vocabulary (words, phrases, and usage (language), linguistic usages) of an informal register, common in spoken conversation but avoided in formal writing. It also sometimes refers to the language generally exclusive to the members of p ...
terms for 0 include ''zilch'' and ''zip''. Historically, ''ought'', ''aught'' (), and ''cipher'', have also been used.


Etymology

The word ''zero'' came into the English language via French from the Italian , a contraction of the Venetian form of Italian via ''ṣafira'' or ''ṣifr''. In pre-Islamic time the word (Arabic ) had the meaning "empty". evolved to mean zero when it was used to translate ( sa, शून्य) from India.See: * Smithsonian Institution, , Annual Report of the Board of Regents of the Smithsonian Institution; Harvard University Archives, Quote="Sifr occurs in the meaning of "empty" even in the pre-Islamic time. ... Arabic sifr in the meaning of zero is a translation of the corresponding India sunya."; * Jan Gullberg (1997), Mathematics: From the Birth of Numbers, W.W. Norton & Co., , p. 26, Quote = ''Zero derives from Hindu sunya – meaning void, emptiness – via Arabic sifr, Latin cephirum, Italian zevero.''; * Robert Logan (2010), The Poetry of Physics and the Physics of Poetry, World Scientific, , p. 38, Quote = The idea of sunya and place numbers was transmitted to the Arabs who translated sunya or "leave a space" into their language as sifr. The first known English use of ''zero'' was in 1598. The Italian mathematician Fibonacci (c. 1170–1250), who grew up in North Africa and is credited with introducing the decimal system to Europe, used the term ''zephyrum''. This became in Italian, and was then contracted to in Venetian. The Italian word was already in existence (meaning "west wind" from Latin and Greek ) and may have influenced the spelling when transcribing Arabic .


Modern usage

Depending on the context, there may be different words used for the number zero, or the concept of zero. For the simple notion of lacking, the words "nothing" and "none" are often used. Sometimes, the word "nought" or "naught" is used. It is often called "oh" in the context of reading out a string of digits, such as
telephone number A telephone number is a sequence of digits assigned to a landline telephone subscriber station connected to a telephone line or to a wireless electronic telephony device, such as a radio telephone or a mobile telephone, or to other devices f ...
s, street addresses, credit card numbers, military time, or years (e.g. the area code 201 would be pronounced "two oh one"; a year such as 1907 is often pronounced "nineteen oh seven"). The presence of other digits, indicating that the string contains only numbers, avoids confusion with the letter O. For this reason, systems that include strings with both letters and numbers (e.g. Canadian postal codes) may exclude the use of the letter O. Slang words for zero include "zip", "zilch", "nada", and "scratch".'Aught' synonyms
, Thesaurus.com – Retrieved April 2013.
"Nil" is used for many sports in
British English British English (BrE, en-GB, or BE) is, according to Lexico, Oxford Dictionaries, "English language, English as used in Great Britain, as distinct from that used elsewhere". More narrowly, it can refer specifically to the English language in ...
. Several sports have specific words for a score of zero, such as "
love Love encompasses a range of strong and positive emotional and mental states, from the most sublime virtue or good habit, the deepest Interpersonal relationship, interpersonal affection, to the simplest pleasure. An example of this range of ...
" in
tennis Tennis is a racket sport that is played either individually against a single opponent ( singles) or between two teams of two players each ( doubles). Each player uses a tennis racket that is strung with cord to strike a hollow rubber ball c ...
– from French ''l'oeuf'', "the egg" – and "
duck Duck is the common name for numerous species of waterfowl in the family Anatidae. Ducks are generally smaller and shorter-necked than swans and geese, which are members of the same family. Divided among several subfamilies, they are a fo ...
" in
cricket Cricket is a bat-and-ball game played between two teams of eleven players on a field at the centre of which is a pitch with a wicket at each end, each comprising two bails balanced on three stumps. The batting side scores runs by st ...
, a shortening of "duck's egg"; "goose egg" is another general slang term used for zero.


History


Ancient Near East

Ancient Egyptian numerals were of base 10. They used hieroglyphs for the digits and were not positional. By 1770 BC, the Egyptians had a symbol for zero in accounting texts. The symbol nfr, meaning beautiful, was also used to indicate the base level in drawings of tombs and pyramids, and distances were measured relative to the base line as being above or below this line. By the middle of the 2nd millennium BC, the Babylonian mathematics had a sophisticated base 60 positional numeral system. The lack of a positional value (or zero) was indicated by a ''space'' between sexagesimal numerals. In a tablet unearthed at Kish (dating to as early as 700 BC), the scribe Bêl-bân-aplu used three hooks as a
placeholder Placeholder may refer to: Language * Placeholder name, a term or terms referring to something or somebody whose name is not known or, in that particular context, is not significant or relevant. * Filler text, text generated to fill space or pro ...
in the same Babylonian system.Kaplan, Robert. (2000). ''The Nothing That Is: A Natural History of Zero''. Oxford: Oxford University Press. By 300 BC, a punctuation symbol (two slanted wedges) was co-opted to serve as this placeholder. The Babylonian placeholder was not a true zero because it was not used alone, nor was it used at the end of a number. Thus numbers like 2 and 120 (2×60), 3 and 180 (3×60), 4 and 240 (4×60) looked the same, because the larger numbers lacked a final sexagesimal placeholder. Only context could differentiate them.


Pre-Columbian Americas

The Mesoamerican Long Count calendar developed in south-central Mexico and Central America required the use of zero as a placeholder within its
vigesimal vigesimal () or base-20 (base-score) numeral system is based on twenty (in the same way in which the decimal numeral system is based on ten). '' Vigesimal'' is derived from the Latin adjective '' vicesimus'', meaning 'twentieth'. Places In ...
(base-20) positional numeral system. Many different glyphs, including the partial
quatrefoil A quatrefoil (anciently caterfoil) is a decorative element consisting of a symmetrical shape which forms the overall outline of four partially overlapping circles of the same diameter. It is found in art, architecture, heraldry and traditional ...
were used as a zero symbol for these Long Count dates, the earliest of which (on Stela 2 at Chiapa de Corzo,
Chiapas Chiapas (; Tzotzil and Tzeltal: ''Chyapas'' ), officially the Free and Sovereign State of Chiapas ( es, Estado Libre y Soberano de Chiapas), is one of the states that make up the 32 federal entities of Mexico. It comprises 124 municipalities ...
) has a date of 36 BC. Since the eight earliest Long Count dates appear outside the Maya homeland, it is generally believed that the use of zero in the Americas predated the Maya and was possibly the invention of the
Olmec The Olmecs () were the earliest known major Mesoamerican civilization. Following a progressive development in Soconusco, they occupied the tropical lowlands of the modern-day Mexican states of Veracruz and Tabasco. It has been speculated that ...
s. Many of the earliest Long Count dates were found within the Olmec heartland, although the Olmec civilization ended by the , several centuries before the earliest known Long Count dates. Although zero became an integral part of Maya numerals, with a different, empty tortoise-like " shell shape" used for many depictions of the "zero" numeral, it is assumed not to have influenced
Old World The "Old World" is a term for Afro-Eurasia that originated in Europe , after Europeans became aware of the existence of the Americas. It is used to contrast the continents of Africa, Europe, and Asia, which were previously thought of by th ...
numeral systems. Quipu, a knotted cord device, used in the
Inca Empire The Inca Empire (also known as the Incan Empire and the Inka Empire), called ''Tawantinsuyu'' by its subjects, ( Quechua for the "Realm of the Four Parts",  "four parts together" ) was the largest empire in pre-Columbian America. The adm ...
and its predecessor societies in the Andean region to record accounting and other digital data, is encoded in a base ten positional system. Zero is represented by the absence of a knot in the appropriate position.


Classical antiquity

The
ancient Greeks Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cult ...
had no symbol for zero (μηδέν), and did not use a digit placeholder for it. According to mathematician Charles Seife, the ancient Greeks did begin to adopt the Babylonian placeholder zero for their work in astronomy after 500 BC, representing it with the lowercase Greek letter ''ό'' (''όμικρον'') or omicron. However, after using the Babylonian placeholder zero for astronomical calculations they would typically convert the numbers back into
Greek numerals Greek numerals, also known as Ionic, Ionian, Milesian, or Alexandrian numerals, are a system of writing numbers using the letters of the Greek alphabet. In modern Greece, they are still used for ordinal numbers and in contexts similar to those ...
. Greeks seemed to have a philosophical opposition to using zero as a number. Other scholars give the Greek partial adoption of the Babylonian zero a later date, with the scientist Andreas Nieder giving a date of after 400 BC and the mathematician Robert Kaplan dating it after the conquests of Alexander. Greeks seemed unsure about the status of zero as a number. Some of them asked themselves, "How can not being be?", leading to philosophical and, by the
medieval In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire a ...
period, religious arguments about the nature and existence of zero and the
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
. The paradoxes of
Zeno of Elea Zeno of Elea (; grc, Ζήνων ὁ Ἐλεᾱ́της; ) was a pre-Socratic Greek philosopher of Magna Graecia and a member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known ...
depend in large part on the uncertain interpretation of zero. By AD 150,
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of import ...
, influenced by
Hipparchus Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equ ...
and the
Babylonia Babylonia (; Akkadian: , ''māt Akkadī'') was an ancient Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Syria). It emerged as an Amorite-ruled state ...
ns, was using a symbol for zero () in his work on mathematical astronomy called the ''Syntaxis Mathematica'', also known as the ''
Almagest The ''Almagest'' is a 2nd-century Greek-language mathematical and astronomical treatise on the apparent motions of the stars and planetary paths, written by Claudius Ptolemy ( ). One of the most influential scientific texts in history, it cano ...
''. This Hellenistic zero was perhaps the earliest documented use of a numeral representing zero in the Old World. Ptolemy used it many times in his ''Almagest'' (VI.8) for the magnitude of
solar Solar may refer to: Astronomy * Of or relating to the Sun ** Solar telescope, a special purpose telescope used to observe the Sun ** A device that utilizes solar energy (e.g. "solar panels") ** Solar calendar, a calendar whose dates indicate t ...
and
lunar eclipse A lunar eclipse occurs when the Moon moves into the Earth's shadow. Such alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Eart ...
s. It represented the value of both
digit Digit may refer to: Mathematics and science * Numerical digit, as used in mathematics or computer science ** Hindu-Arabic numerals, the most common modern representation of numerical digits * Digit (anatomy), the most distal part of a limb, such ...
s and
minutes Minutes, also known as minutes of meeting (abbreviation MoM), protocols or, informally, notes, are the instant written record of a meeting or hearing. They typically describe the events of the meeting and may include a list of attendees, a state ...
of immersion at first and last contact. Digits varied continuously from 0 to 12 to 0 as the Moon passed over the Sun (a triangular pulse), where twelve digits was the angular diameter of the Sun. Minutes of immersion was tabulated from 00 to 3120 to 00, where 00 used the symbol as a placeholder in two positions of his sexagesimal positional numeral system, while the combination meant a zero angle. Minutes of immersion was also a continuous function (a triangular pulse with convex sides), where d was the digit function and 3120 was the sum of the radii of the Sun's and Moon's discs. Ptolemy's symbol was a placeholder as well as a number used by two continuous mathematical functions, one within another, so it meant zero, not none. The earliest use of zero in the calculation of the Julian Easter occurred before AD311, at the first entry in a table of
epact The epact ( la, epactae, from grc, ἐπακται ἡμεραι () = added days), used to be described by medieval computists as the age of a phase of the Moon in days on 22 March; in the newer Gregorian calendar, however, the epact is reckone ...
s as preserved in an Ethiopic document for the years AD311 to 369, using a Ge'ez word for "none" (English translation is "0" elsewhere) alongside Ge'ez numerals (based on Greek numerals), which was translated from an equivalent table published by the Church of Alexandria in
Medieval Greek Medieval Greek (also known as Middle Greek, Byzantine Greek, or Romaic) is the stage of the Greek language between the end of classical antiquity in the 5th–6th centuries and the end of the Middle Ages, conventionally dated to the Ottoman c ...
.. The pages in this edition have numbers six less than the same pages in the original edition. This use was repeated in AD525 in an equivalent table, that was translated via the Latin ''nulla'' or "none" by
Dionysius Exiguus Dionysius Exiguus (Latin for "Dionysius the Humble", Greek: Διονύσιος; – ) was a 6th-century Eastern Roman monk born in Scythia Minor. He was a member of a community of Scythian monks concentrated in Tomis (present day Constanța ...
, alongside Roman numerals. When division produced zero as a remainder, ''nihil'', meaning "nothing", was used. These medieval zeros were used by all future medieval calculators of Easter. The initial "N" was used as a zero symbol in a table of Roman numerals by
Bede Bede ( ; ang, Bǣda , ; 672/326 May 735), also known as Saint Bede, The Venerable Bede, and Bede the Venerable ( la, Beda Venerabilis), was an English monk at the monastery of St Peter and its companion monastery of St Paul in the Kingdom ...
—or his colleagues—around AD 725.C. W. Jones, ed., ''Opera Didascalica'', vol. 123C in ''Corpus Christianorum, Series Latina''.


China

The '' Sūnzĭ Suànjīng'', of unknown date but estimated to be dated from the 1st to , and Japanese records dated from the 18th century, describe how the Chinese
counting rods Counting rods () are small bars, typically 3–14 cm long, that were used by mathematicians for calculation in ancient East Asia. They are placed either horizontally or vertically to represent any integer or rational number. The written ...
system enabled one to perform decimal calculations. As noted in Xiahou Yang's Suanjing (425–468 AD) that states that to multiply or divide a number by 10, 100, 1000, or 10000, all one needs to do, with rods on the counting board, is to move them forwards, or back, by 1, 2, 3, or 4 places, According to ''A History of Mathematics'', the rods "gave the decimal representation of a number, with an empty space denoting zero". The counting rod system is considered a positional notation system. In AD 690, Empress Wǔ promulgated Zetian characters, one of which was "〇"; originally meaning 'star', it subsequently came to represent zero. Zero was not treated as a number at that time, but as a "vacant position". Qín Jiǔsháo's 1247 '' Mathematical Treatise in Nine Sections'' is the oldest surviving Chinese mathematical text using a round symbol for zero. Chinese authors had been familiar with the idea of negative numbers by the
Han Dynasty The Han dynasty (, ; ) was an Dynasties in Chinese history, imperial dynasty of China (202 BC – 9 AD, 25–220 AD), established by Emperor Gaozu of Han, Liu Bang (Emperor Gao) and ruled by the House of Liu. The dynasty was preceded by th ...
, as seen in '' The Nine Chapters on the Mathematical Art''.Struik, Dirk J. (1987). ''A Concise History of Mathematics''. New York: Dover Publications. pp. 32–33. "''In these matrices we find negative numbers, which appear here for the first time in history.''"


India

Pingala (c. 3rd/2nd century BC), a Sanskrit prosody scholar, used
binary numbers A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" ( one). The base-2 numeral system is a positional notation ...
in the form of short and long syllables (the latter equal in length to two short syllables), a notation similar to
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
. Pingala used the
Sanskrit Sanskrit (; attributively , ; nominalization, nominally , , ) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in South Asia after its predecessor languages had Trans-cul ...
word '' śūnya'' explicitly to refer to zero. The concept of zero as a written digit in the decimal place value notation was developed in
India India, officially the Republic of India ( Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the ...
.Bourbaki, Nicolas ''Elements of the History of Mathematics'' (1998), p. 46 A symbol for zero, a large dot likely to be the precursor of the still-current hollow symbol, is used throughout the Bakhshali manuscript, a practical manual on arithmetic for merchants. In 2017, three samples from the manuscript were shown by
radiocarbon dating Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon. The method was de ...
to come from three different centuries: from AD 224–383, AD 680–779, and AD 885–993, making it South Asia's oldest recorded use of the zero symbol. It is not known how the
birch A birch is a thin-leaved deciduous hardwood tree of the genus ''Betula'' (), in the family Betulaceae, which also includes alders, hazels, and hornbeams. It is closely related to the beech- oak family Fagaceae. The genus ''Betula'' contains 3 ...
bark fragments from different centuries forming the manuscript came to be packaged together. The '' Lokavibhāga'', a Jain text on
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosophe ...
surviving in a medieval Sanskrit translation of the
Prakrit The Prakrits (; sa, prākṛta; psu, 𑀧𑀸𑀉𑀤, ; pka, ) are a group of vernacular Middle Indo-Aryan languages that were used in the Indian subcontinent from around the 3rd century BCE to the 8th century CE. The term Prakrit is usu ...
original, which is internally dated to AD 458 ( Saka era 380), uses a decimal place-value system, including a zero. In this text, '' śūnya'' ("void, empty") is also used to refer to zero. The '' Aryabhatiya'' (c. 500), states ''sthānāt sthānaṁ daśaguṇaṁ syāt'' "from place to place each is ten times the preceding".''Aryabhatiya of Aryabhata'', translated by Walter Eugene Clark. Rules governing the use of zero appeared in Brahmagupta's '' Brahmasputha Siddhanta'' (7th century), which states the sum of zero with itself as zero, and incorrectly division by zero as:''Algebra with Arithmetic of Brahmagupta and Bhaskara''
translated to English by Henry Thomas Colebrooke (1817) London
A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero.


Epigraphy

A black dot is used as a decimal placeholder in the Bakhshali manuscript, portions of which date from AD 224–993. There are numerous copper plate inscriptions, with the same small ''o'' in them, some of them possibly dated to the 6th century, but their date or authenticity may be open to doubt. A stone tablet found in the ruins of a temple near Sambor on the
Mekong The Mekong or Mekong River is a trans-boundary river in East Asia and Southeast Asia. It is the world's twelfth longest river and the third longest in Asia. Its estimated length is , and it drains an area of , discharging of water annuall ...
, Kratié Province,
Cambodia Cambodia (; also Kampuchea ; km, កម្ពុជា, UNGEGN: ), officially the Kingdom of Cambodia, is a country located in the southern portion of the Indochinese Peninsula in Southeast Asia, spanning an area of , bordered by Thailan ...
, includes the inscription of "605" in
Khmer numerals Khmer numerals are the numerals used in the Khmer language. They have been in use since at least the early 7th century, with the earliest known use being on a stele dated to AD 604 found in Prasat Bayang, near Angkor Borei, Cambodia. Numer ...
(a set of numeral glyphs for the Hindu–Arabic numeral system). The number is the year of the inscription in the Saka era, corresponding to a date of AD 683. Cœdès, George, "A propos de l'origine des chiffres arabes," Bulletin of the School of Oriental Studies, University of London, Vol. 6, No. 2, 1931, pp. 323–328. Diller, Anthony, "New Zeros and Old Khmer," The Mon-Khmer Studies Journal, Vol. 25, 1996, pp. 125–132. The first known use of special
glyph A glyph () is any kind of purposeful mark. In typography, a glyph is "the specific shape, design, or representation of a character". It is a particular graphical representation, in a particular typeface, of an element of written language. A g ...
s for the decimal digits that includes the indubitable appearance of a symbol for the digit zero, a small circle, appears on a stone inscription found at the
Chaturbhuj Temple, Gwalior __NOTOC__ Chaturbhuj is a Hindu temple excavated in a rock face in the Gwalior Fort, in c875 AD, by Alla, the son of Vaillabhatta, and the grandson of Nagarabhatta a nagar brahmin in present-day Madhya Pradesh, India. One of the temples inscrip ...
, in India, dated 876.


Middle Ages


Transmission to Islamic culture

The
Arabic Arabic (, ' ; , ' or ) is a Semitic language spoken primarily across the Arab world.Semitic languages: an international handbook / edited by Stefan Weninger; in collaboration with Geoffrey Khan, Michael P. Streck, Janet C. E.Watson; Walte ...
-language inheritance of science was largely
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
, followed by Hindu influences.Will Durant (1950), ''The Story of Civilization'', Volume 4, The Age of Faith: Constantine to Dante – A.D. 325–1300, Simon & Schuster, , p. 241, "The Arabic inheritance of science was overwhelmingly Greek, but Hindu influences ranked next. In 773, at Mansur's behest, translations were made of the ''Siddhantas'' – Indian astronomical treatises dating as far back as 425 BC; these versions may have the vehicle through which the "Arabic" numerals and the zero were brought from India into Islam. In 813, al-Khwarizmi used the Hindu numerals in his astronomical tables." In 773, at Al-Mansur's behest, translations were made of many ancient treatises including Greek, Roman, Indian, and others. In AD 813, astronomical tables were prepared by a Persian mathematician, Muḥammad ibn Mūsā al-Khwārizmī, using Hindu numerals; and about 825, he published a book synthesizing Greek and Hindu knowledge and also contained his own contribution to mathematics including an explanation of the use of zero. This book was later translated into
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power ...
in the 12th century under the title ''Algoritmi de numero Indorum''. This title means "al-Khwarizmi on the Numerals of the Indians". The word "Algoritmi" was the translator's Latinization of Al-Khwarizmi's name, and the word "Algorithm" or "Algorism" started to acquire a meaning of any arithmetic based on decimals.
Muhammad ibn Ahmad al-Khwarizmi Muḥammad ibn al-ʿAbbās Abū Bakr al-Khwārazmī, better simply known as Abu Bakr al-Khwarazmi was a 10th-century Iranian poet and secretary, who throughout his long career served in the court of the Hamdanids, Samanids, Saffarids and Buyids. He ...
, in 976, stated that if no number appears in the place of tens in a calculation, a little circle should be used "to keep the rows". This circle was called ''ṣifr''.


Transmission to Europe

The Hindu–Arabic numeral system (base 10) reached Western Europe in the 11th century, via
Al-Andalus Al-Andalus translit. ; an, al-Andalus; ast, al-Ándalus; eu, al-Andalus; ber, ⴰⵏⴷⴰⵍⵓⵙ, label= Berber, translit=Andalus; ca, al-Àndalus; gl, al-Andalus; oc, Al Andalús; pt, al-Ândalus; es, al-Ándalus () was the Mus ...
, through Spanish Muslims, the
Moors The term Moor, derived from the ancient Mauri, is an exonym first used by Christian Europeans to designate the Muslim inhabitants of the Maghreb, the Iberian Peninsula, Sicily and Malta during the Middle Ages. Moors are not a distinct o ...
, together with knowledge of classical
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
and instruments like the
astrolabe An astrolabe ( grc, ἀστρολάβος ; ar, ٱلأَسْطُرلاب ; persian, ستاره‌یاب ) is an ancient astronomical instrument that was a handheld model of the universe. Its various functions also make it an elaborate incli ...
;
Gerbert of Aurillac Pope Sylvester II ( – 12 May 1003), originally known as Gerbert of Aurillac, was a French-born scholar and teacher who served as the bishop of Rome and ruled the Papal States from 999 to his death. He endorsed and promoted study of Arab and Gr ...
is credited with reintroducing the lost teachings into Catholic Europe. For this reason, the numerals came to be known in Europe as "Arabic numerals". The Italian mathematician Fibonacci or Leonardo of Pisa was instrumental in bringing the system into European mathematics in 1202, stating:
After my father's appointment by his homeland as state official in the customs house of Bugia for the Pisan merchants who thronged to it, he took charge; and in view of its future usefulness and convenience, had me in my boyhood come to him and there wanted me to devote myself to and be instructed in the study of calculation for some days. There, following my introduction, as a consequence of marvelous instruction in the art, to the nine digits of the Hindus, the knowledge of the art very much appealed to me before all others, and for it I realized that all its aspects were studied in Egypt, Syria, Greece, Sicily, and Provence, with their varying methods; and at these places thereafter, while on business. I pursued my study in depth and learned the give-and-take of disputation. But all this even, and the algorism, as well as the art of Pythagoras, I considered as almost a mistake in respect to the method of the
Hindus Hindus (; ) are people who religiously adhere to Hinduism.Jeffery D. Long (2007), A Vision for Hinduism, IB Tauris, , pages 35–37 Historically, the term has also been used as a geographical, cultural, and later religious identifier for ...
(Modus Indorum). Therefore, embracing more stringently that method of the Hindus, and taking stricter pains in its study, while adding certain things from my own understanding and inserting also certain things from the niceties of Euclid's geometric art. I have striven to compose this book in its entirety as understandably as I could, dividing it into fifteen chapters. Almost everything which I have introduced I have displayed with exact proof, in order that those further seeking this knowledge, with its pre-eminent method, might be instructed, and further, in order that the Latin people might not be discovered to be without it, as they have been up to now. If I have perchance omitted anything more or less proper or necessary, I beg indulgence, since there is no one who is blameless and utterly provident in all things. The nine Indian figures are: 9 8 7 6 5 4 3 2 1. With these nine figures, and with the sign 0  ... any number may be written.
Here Leonardo of Pisa uses the phrase "sign 0", indicating it is like a sign to do operations like addition or multiplication. From the 13th century, manuals on calculation (adding, multiplying, extracting roots, etc.) became common in Europe where they were called '' algorismus'' after the Persian mathematician al-Khwārizmī. The most popular was written by Johannes de Sacrobosco, about 1235 and was one of the earliest scientific books to be ''printed'' in 1488. Until the late 15th century, Hindu–Arabic numerals seem to have predominated among mathematicians, while merchants preferred to use the Roman numerals. In the 16th century, they became commonly used in Europe.


Mathematics

0 is the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
immediately preceding 1. Zero is an even number because it is divisible by 2 with no remainder. 0 is neither positive nor negative, or both positive and negative. Many definitions include 0 as a
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
, in which case it is the only natural number that is not positive. Zero is a number which quantifies a count or an amount of null size. In most
cultures Culture () is an umbrella term which encompasses the social behavior, institutions, and norms found in human societies, as well as the knowledge, beliefs, arts, laws, customs, capabilities, and habits of the individuals in these grou ...
, 0 was identified before the idea of negative things (i.e., quantities less than zero) was accepted. As a value or a ''number'', zero is not the same as the ''digit'' zero, used in
numeral system A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symb ...
s with positional notation. Successive positions of digits have higher weights, so the digit zero is used inside a numeral to skip a position and give appropriate weights to the preceding and following digits. A zero digit is not always necessary in a positional number system (e.g., the number 02). In some instances, a leading zero may be used to distinguish a number.


Elementary algebra

The number 0 is the smallest non-negative integer. The
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
following 0 is 1 and no natural number precedes 0. The number 0 may or may not be considered a natural number, but it is an integer, and hence a
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
and a
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
(as well as an algebraic number and a
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
). The number 0 is neither positive nor negative, and is usually displayed as the central number in a number line. It is neither a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
nor a
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
. It cannot be prime because it has an infinite number of factors, and cannot be composite because it cannot be expressed as a product of prime numbers (as 0 must always be one of the factors). Zero is, however, even (i.e. a multiple of 2, as well as being a multiple of any other integer, rational, or real number). The following are some basic (elementary) rules for dealing with the number 0. These rules apply for any real or complex number ''x'', unless otherwise stated. * Addition: ''x'' + 0 = 0 + ''x'' = ''x''. That is, 0 is an
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures s ...
(or neutral element) with respect to addition. * Subtraction: ''x'' − 0 = ''x'' and 0 − ''x'' = −''x''. * Multiplication: ''x'' · 0 = 0 · ''x'' = 0. * Division: = 0, for nonzero ''x''. But is undefined, because 0 has no
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/''b ...
(no real number multiplied by 0 produces 1), a consequence of the previous rule. * Exponentiation: ''x''0 = = 1, except that the case ''x'' = 0 may be left undefined in some contexts. For all positive real ''x'', . The expression , which may be obtained in an attempt to determine the limit of an expression of the form as a result of applying the lim operator independently to both operands of the fraction, is a so-called "
indeterminate form In calculus and other branches of mathematical analysis, limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits; if the expression obtained after this s ...
". That does not mean that the limit sought is necessarily undefined; rather, it means that the limit of , if it exists, must be found by another method, such as l'Hôpital's rule. The sum of 0 numbers (the '' empty sum'') is 0, and the product of 0 numbers (the '' empty product'') is 1. The factorial 0! evaluates to 1, as a special case of the empty product.


Other branches of mathematics

* In
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
, 0 is the
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of the empty set: if one does not have any apples, then one has 0 apples. In fact, in certain axiomatic developments of mathematics from set theory, 0 is ''
defined A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
'' to be the empty set. When this is done, the empty set is the
von Neumann cardinal assignment The von Neumann cardinal assignment is a cardinal assignment that uses ordinal numbers. For a well-orderable set ''U'', we define its cardinal number to be the smallest ordinal number equinumerous to ''U'', using the von Neumann definition of an or ...
for a set with no elements, which is the empty set. The cardinality function, applied to the empty set, returns the empty set as a value, thereby assigning it 0 elements. * Also in set theory, 0 is the lowest ordinal number, corresponding to the empty set viewed as a well-ordered set. * In propositional logic, 0 may be used to denote the truth value false. * In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The te ...
, 0 is commonly used to denote a
zero element In mathematics, a zero element is one of several generalizations of 0, the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive iden ...
, which is a neutral element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined). * In lattice theory, 0 may denote the
bottom element In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an el ...
of a
bounded lattice A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bou ...
. * In category theory, 0 is sometimes used to denote an initial object of a
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
. * In
recursion theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has sinc ...
, 0 can be used to denote the Turing degree of the partial computable functions.


Related mathematical terms

* A ''
zero of a function In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or ...
'' ''f'' is a point ''x'' in the domain of the function such that . When there are finitely many zeros these are called the roots of the function. This is related to zeros of a holomorphic function. * The zero function (or zero map) on a domain ''D'' is the constant function with 0 as its only possible output value, i.e., the function ''f'' defined by for all ''x'' in ''D''. The zero function is the only function that is both even and odd. A particular zero function is a zero morphism in category theory; e.g., a zero map is the identity in the additive group of functions. The
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
on non-invertible square matrices is a zero map. * Several branches of mathematics have
zero element In mathematics, a zero element is one of several generalizations of 0, the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive iden ...
s, which generalize either the property , or the property or both.


Physics

The value zero plays a special role for many physical quantities. For some quantities, the zero level is naturally distinguished from all other levels, whereas for others it is more or less arbitrarily chosen. For example, for an absolute temperature (as measured in
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ph ...
s),
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
is the lowest possible value (
negative temperature Certain systems can achieve negative thermodynamic temperature; that is, their temperature can be expressed as a negative quantity on the Kelvin or Rankine scales. This should be distinguished from temperatures expressed as negative numbers ...
s are defined, but negative-temperature systems are not actually colder). This is in contrast to for example temperatures on the Celsius scale, where zero is arbitrarily defined to be at the freezing point of water. Measuring sound intensity in decibels or phons, the zero level is arbitrarily set at a reference value—for example, at a value for the threshold of hearing. In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, the zero-point energy is the lowest possible energy that a quantum mechanical
physical system A physical system is a collection of physical objects. In physics, it is a portion of the physical universe chosen for analysis. Everything outside the system is known as the environment. The environment is ignored except for its effects on the ...
may possess and is the energy of the ground state of the system.


Chemistry

Zero has been proposed as the atomic number of the theoretical element tetraneutron. It has been shown that a cluster of four
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s may be stable enough to be considered an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas ...
in its own right. This would create an element with no protons and no charge on its nucleus. As early as 1926, Andreas von Antropoff coined the term neutronium for a conjectured form of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic par ...
made up of neutrons with no protons, which he placed as the chemical element of atomic number zero at the head of his new version of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ...
. It was subsequently placed as a noble gas in the middle of several spiral representations of the periodic system for classifying the chemical elements.


Computer science

The most common practice throughout human history has been to start counting at one, and this is the practice in early classic
computer programming Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as anal ...
languages such as Fortran and COBOL. However, in the late 1950s
LISP A lisp is a speech impairment in which a person misarticulates sibilants (, , , , , , , ). These misarticulations often result in unclear speech. Types * A frontal lisp occurs when the tongue is placed anterior to the target. Interdental lispi ...
introduced zero-based numbering for arrays while
Algol 58 ALGOL 58, originally named IAL, is one of the family of ALGOL computer programming languages. It was an early compromise design soon superseded by ALGOL 60. According to John Backus The Zurich ACM-GAMM Conference had two principal motives in p ...
introduced completely flexible basing for array subscripts (allowing any positive, negative, or zero integer as base for array subscripts), and most subsequent programming languages adopted one or other of these positions. For example, the elements of an array are numbered starting from 0 in C, so that for an array of ''n'' items the sequence of array indices runs from 0 to . This permits an array element's location to be calculated by adding the index directly to address of the array, whereas 1-based languages precalculate the array's base address to be the position one element before the first. There can be confusion between 0- and 1-based indexing; for example, Java's JDBC indexes parameters from 1 although
Java Java (; id, Jawa, ; jv, ꦗꦮ; su, ) is one of the Greater Sunda Islands in Indonesia. It is bordered by the Indian Ocean to the south and the Java Sea to the north. With a population of 151.6 million people, Java is the world's mo ...
itself uses 0-based indexing. In databases, it is possible for a field not to have a value. It is then said to have a null value. For numeric fields it is not the value zero. For text fields this is not blank nor the empty string. The presence of null values leads to three-valued logic. No longer is a condition either ''true'' or ''false'', but it can be ''undetermined''. Any computation including a null value delivers a null result. A null pointer is a pointer in a computer program that does not point to any object or function. In C, the integer constant 0 is converted into the null pointer at compile time when it appears in a pointer context, and so 0 is a standard way to refer to the null pointer in code. However, the internal representation of the null pointer may be any bit pattern (possibly different values for different data types). In mathematics, −0 and +0 is equivalent to 0; both −0 and +0 represent exactly the same number, i.e., there is no "positive zero" or "negative zero" distinct from zero. However, in some computer hardware signed number representations, zero has two distinct representations, a positive one grouped with the positive numbers and a negative one grouped with the negatives; this kind of dual representation is known as signed zero, with the latter form sometimes called negative zero. These representations include the
signed magnitude In computing, signed number representations are required to encode negative numbers in binary number systems. In mathematics, negative numbers in any base are represented by prefixing them with a minus sign ("−"). However, in RAM or CPU regi ...
and one's complement binary integer representations (but not the
two's complement Two's complement is a mathematical operation to reversibly convert a positive binary number into a negative binary number with equivalent (but negative) value, using the binary digit with the greatest place value (the leftmost bit in big- endian ...
binary form used in most modern computers), and most
floating-point In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be ...
number representations (such as IEEE 754 and
IBM S/390 The IBM System/390 is a discontinued mainframe product family implementing the ESA/390, the fifth generation of the System/360 instruction set architecture. The first computers to use the ESA/390 were the Enterprise System/9000 (ES/9000) ...
floating-point formats). In binary, 0 represents the value for "off", which means no electricity flow. Zero is the value of false in many programming languages. The Unix epoch (the date and time associated with a zero timestamp) begins the midnight before the first of January 1970. The Classic Mac OS epoch and Palm OS epoch (the date and time associated with a zero timestamp) begins the midnight before the first of January 1904. Many
APIs Apis or APIS may refer to: * Apis (deity), an ancient Egyptian god * Apis (Greek mythology), several different figures in Greek mythology * Apis (city), an ancient seaport town on the northern coast of Africa **Kom el-Hisn, a different Egyptian ci ...
and
operating system An operating system (OS) is system software that manages computer hardware, software resources, and provides common daemon (computing), services for computer programs. Time-sharing operating systems scheduler (computing), schedule tasks for ef ...
s that require applications to return an integer value as an exit status typically use zero to indicate success and non-zero values to indicate specific
error An error (from the Latin ''error'', meaning "wandering") is an action which is inaccurate or incorrect. In some usages, an error is synonymous with a mistake. The etymology derives from the Latin term 'errare', meaning 'to stray'. In statistic ...
or warning conditions. Programmers often use a slashed zero to avoid confusion with the letter " O".


Other fields

* In comparative zoology and cognitive science, recognition that some animals display awareness of the concept of zero leads to the conclusion that the capability for numerical abstraction arose early in the evolution of species. * In telephony, pressing 0 is often used for dialling out of a company network or to a different city or region, and 00 is used for dialling abroad. In some countries, dialling 0 places a call for
operator assistance Operator assistance refers to a telephone call in which the calling party requires an operator to provide some form of assistance in completing the call. This may include telephone calls made from pay phones, calls placed station-to-station, p ...
. * DVDs that can be played in any region are sometimes referred to as being " region 0" * Roulette wheels usually feature a "0" space (and sometimes also a "00" space), whose presence is ignored when calculating payoffs (thereby allowing the house to win in the long run). * In
Formula One Formula One (also known as Formula 1 or F1) is the highest class of international racing for open-wheel single-seater formula racing cars sanctioned by the Fédération Internationale de l'Automobile (FIA). The World Drivers' Championship ...
, if the reigning World Champion no longer competes in Formula One in the year following their victory in the title race, 0 is given to one of the drivers of the team that the reigning champion won the title with. This happened in 1993 and 1994, with Damon Hill driving car 0, due to the reigning World Champion ( Nigel Mansell and Alain Prost respectively) not competing in the championship. * On the U.S.
Interstate Highway System The Dwight D. Eisenhower National System of Interstate and Defense Highways, commonly known as the Interstate Highway System, is a network of controlled-access highways that forms part of the National Highway System in the United States. T ...
, in most states exits are numbered based on the nearest milepost from the highway's western or southern terminus within that state. Several that are less than half a mile (800 m) from state boundaries in that direction are numbered as Exit 0.


Symbols and representations

The modern numerical digit 0 is usually written as a circle or ellipse. Traditionally, many print typefaces made the capital letter O more rounded than the narrower, elliptical digit 0.
Typewriter A typewriter is a mechanical or electromechanical machine for typing characters. Typically, a typewriter has an array of keys, and each one causes a different single character to be produced on paper by striking an inked ribbon selective ...
s originally made no distinction in shape between O and 0; some models did not even have a separate key for the digit 0. The distinction came into prominence on modern character displays. A slashed zero (0\!\!\!) can be used to distinguish the number from the letter (mostly used in computing, navigation and in the military). The digit 0 with a dot in the center seems to have originated as an option on IBM 3270 displays and has continued with some modern computer typefaces such as Andalé Mono, and in some airline reservation systems. One variation uses a short vertical bar instead of the dot. Some fonts designed for use with computers made one of the capital-O–digit-0 pair more rounded and the other more angular (closer to a rectangle). A further distinction is made in falsification-hindering typeface as used on
German car number plates German vehicle registration plates (german: Kraftfahrzeug-Kennzeichen or, more colloquially, ) are alphanumeric plates in a standardized format, issued officially by the district authorities to motorized vehicles of German residents. The lega ...
by slitting open the digit 0 on the upper right side. In some systems either the letter O or the numeral 0, or both, are excluded from use, to avoid confusion.


Year label

In the BC
calendar era A calendar era is the period of time elapsed since one '' epoch'' of a calendar and, if it exists, before the next one. For example, it is the year as per the Gregorian calendar, which numbers its years in the Western Christian era (the Copt ...
, the year 1 BC is the first year before AD 1; there is not a year zero. By contrast, in
astronomical year numbering Astronomical year numbering is based on AD/ CE year numbering, but follows normal decimal integer numbering more strictly. Thus, it has a year 0; the years before that are designated with negative numbers and the years after that are designated ...
, the year 1 BC is numbered 0, the year 2 BC is numbered −1, and so forth.


See also

* Brahmagupta * Aryabhata * Division by zero *
Grammatical number In linguistics, grammatical number is a grammatical category of nouns, pronouns, adjectives and verb agreement that expresses count distinctions (such as "one", "two" or "three or more"). English and other languages present number categories of ...
* Gwalior Fort * Mathematical constant *
Number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
* Peano axioms * Signed zero


Notes


References


Bibliography

* * * *


Historical studies

* * * * *


External links


Searching for the World's First Zero



Zero Saga


*
Edsger W. Dijkstra Edsger Wybe Dijkstra ( ; ; 11 May 1930 – 6 August 2002) was a Dutch computer scientist, programmer, software engineer, systems scientist, and science essayist. He received the 1972 Turing Award for fundamental contributions to developing progra ...

Why numbering should start at zero
EWD831 ( PDF of a handwritten manuscript) * * * {{DEFAULTSORT:0 (Number) Elementary arithmetic 00 Indian inventions